6 research outputs found

    Female economic dependence and the morality of promiscuity

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ The Author(s) 2014.In environments in which female economic dependence on a male mate is higher, male parental investment is more essential. In such environments, therefore, both sexes should value paternity certainty more and thus object more to promiscuity (because promiscuity undermines paternity certainty). We tested this theory of anti-promiscuity morality in two studies (N = 656 and N = 4,626) using U.S. samples. In both, we examined whether opposition to promiscuity was higher among people who perceived greater female economic dependence in their social network. In Study 2, we also tested whether economic indicators of female economic dependence (e.g., female income, welfare availability) predicted anti-promiscuity morality at the state level. Results from both studies supported the proposed theory. At the individual level, perceived female economic dependence explained significant variance in anti-promiscuity morality, even after controlling for variance explained by age, sex, religiosity, political conservatism, and the anti-promiscuity views of geographical neighbors. At the state level, median female income was strongly negatively related to anti-promiscuity morality and this relationship was fully mediated by perceived female economic dependence. These results were consistent with the view that anti-promiscuity beliefs may function to promote paternity certainty in circumstances where male parental investment is particularly important

    Environmental factors are stronger predictors of primate species’ distributions than basic biological traits

    Get PDF
    Understanding the neutral, biological and environmental processes driving species distributions is valuable in informing conservation efforts because it will help us predict how species will respond to changes in environmental conditions. Environmental processes affect species differently according to their biological traits, which determine how they interact with their environment. Therefore, functional, trait-based modelling approaches are considered important for predicting distributions and species responses to change but even for data-rich primate communities our understanding of the relationships between traits and environmental conditions is limited. Here we use a large-scale, high-resolution dataset of African diurnal primate distributions, biological traits and environmental conditions to investigate the role of biological traits and environmental trait filtering in primate distributions. We collected data from published sources for 354 sites, and 14 genera with 57 species across Sub-Saharan Africa. We then combined a three-table ordination method, RLQ, with the Fourth Corner approach to test relationships between environmental variables and biological traits and used a mapping approach to visually assess patterning in primate genus and species’ distributions. We found no significant relationships between any groups of environmental variables and biological traits, despite a clear role of environmental filtering in driving genus and species’ distributions. The most important environmental driver of species distributions was temperature seasonality, followed by rainfall. We conclude that the relative flexibility of many primate genera means that not any one particular set of traits drives their species-environment associations, despite the clear role of such associations in their distribution patterns

    Time constraints do not limit group size in arboreal guenons but do explain community size and distribution patterns

    Get PDF
    To understand how species will respond to environmental changes, it is important to know how those changes will affect the ecological stress that animals experience. Time constraints can be used as indicators of ecological stress. Here we test whether time constraints can help us understand group sizes, distribution patterns and community sizes of forest guenons (Cercopithecus/Allochrocebus). Forest guenons typically live in small to medium sized one-male multi-female groups and often live in communities with multiple forest guenon species. We developed a time-budget model using published data on time budgets, diets, body sizes, climate, and group sizes to predict maximum ecologically tolerable group and community sizes of forest guenons across 202 sub-Saharan African locations. The model correctly predicted presence/absence at 83% of these locations. Feeding-foraging time (an indicator of competition) limited group sizes, while resting and moving time constraints shaped guenon biogeography. Predicted group sizes were greater than observed group sizes but comparable to community sizes, suggesting community sizes are set by competition among guenon individuals irrespective of species. We conclude that time constraints and intra-specific competition are unlikely to be the main determinants of relatively small group sizes in forest guenons. Body mass was negatively correlated with moving time, which may give larger bodied species an advantage over smaller bodied species under future conditions when greater fragmentation of forests is likely to lead to increased moving time. Resting time heavily depended on leaf consumption and is likely to increase under future climatic conditions when leaf quality is expected to decrease

    The impact of natural resource use on bird and reptile communities within multiple-use protected areas: evidence from sub-arid southern Madagascar

    Get PDF
    Multiple-use protected areas, in which sustainable levels of extractive livelihood activities are permitted, play an increasingly important role in the global protected area estate, and are expected to rise in prevalence. However, we know little about their effectiveness at conserving biodiversity. We surveyed bird and reptile communities in three areas across a forest disturbance gradient resulting from charcoal production and shifting cultivation within a multiple-use protected area in Madagascar’s sub-arid spiny forest. We scored individual species using a Conservation Value Index (CVI; a simple metric based on rarity, threat and distinctiveness), and estimated the total conservation value of each treatment by calculating the sum of frequency-weighted CVI scores across all present species. Bird and reptile community responses to forest disturbance were idiosyncratic. Bird richness was greatest in the moderate-disturbance treatment, but the low-disturbance treatment had the superior conservation value due to higher frequencies of locally-endemic species. Reptile richness was the same in low- and moderate-disturbance treatments, but the conservation value of the latter was greater. The high-disturbance areas had lowest richness and conservation value for both groups. For birds, increasing disturbance levels were accompanied by community turnover from high-value to low-value species, a pattern highlighted by CVI that is masked by assessing species richness alone. Although some endemic species appear to be resilient to degradation, multiple-use protected areas in Madagascar may lose biodiversity since most endemic species are forest-dependent. Stricter protected area models may be more appropriate in areas where much of the high-value biodiversity is sensitive to habitat degradation
    corecore